Autor: |
Gerus, S. V., Dementienko, V. V., Mirgorodskiy, V. I. |
Zdroj: |
Pattern Recognition & Image Analysis; Dec2023, Vol. 33 Issue 4, p1377-1401, 25p |
Abstrakt: |
Based on an analysis of statistical data on railway and road traffic, as well as laboratory studies, mathematical models are developed that describe the "human–monitoring system–vehicle–traffic system" system. The issues of classifying operators according to their tendency to fall asleep and create emergency situations are explored. A statistical analysis of the accident rate of vehicle drivers was carried out based on their susceptibility to accidents. The degree of effectiveness and safety of monitoring systems is taken into account, as well as the influence of psychological factors caused by drivers excessive trust in the monitoring system. The risks associated with system malfunctions and insufficient efficiency of its operation are calculated. The use of an ineffective driver monitoring system does not reduce, but increases the likelihood of an accident. The design and principles of operation of a driver vigilance telemechanical control system (DVTCS) are described. The device is designed for continuous monitoring of the drivers vigilance and attentiveness while driving rolling stock. The work of DVTCS is based on scientific results according to which episodic changes in skin resistance reflect the level of alertness and wakefulness. It has been shown that due to more reliable, continuous, and nondistracting monitoring of the drivers physiological state the DVTCS provides a higher level of traffic safety than its "Safety Handle" counterpart. Statistical data from operational and laboratory data have been analyzed, indicating a high level of operational safety of the DVTCS. A comparison of Russian and international requirements for the safety level of DVTCS has been carried out. Methods for further improvement of the device are noted. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|