Abstrakt: |
Abiotic stress conditions caused by increasing anthropogenic activities over the years necessitate using marginal waters in agricultural irrigation and pose a risk to public health by causing salt stress and heavy metal pollution in the soil. The study exposed rocket (Eruca sativa L.), cress (Lepidium sativum L.), and parsley (Petroselinum crispum Mill.) plants to heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr at rates of 300, 140, 75, 300, 3, and 100 mg kg−1, respectively) and salt stress (3, 6, and 9 dS m−1). Both stress conditions affected plant growth negatively. Biomass losses reaching 88% occurred in the rocket, which was determined to be more sensitive to salt stress than heavy metal stress. In parsley, on the other hand, it was determined that the above‐ground organs were more affected by salt stress, but the negative effect of heavy metal stress on the roots was higher than salt stress. In cress, the cultivars produced different responses to stress factors. The Zeybek cultivar was more affected by salt stress, and Bahargülü was more affected by heavy metal stress. In general, an increase in macro‐ and micronutrients was found under stress conditions. In addition, it was determined that the plants were hyper‐accumulative in terms of lead absorption and were sorted as cress > parsley > rocket in terms of metal uptake. According to these findings, these plants should be grown taking into account the lead values in the soil, and consumers should be aware that they are a group of vegetables that accumulate lead.Core Ideas: The use of marginal water in agricultural irrigation threatens sustainable agriculture and public health.The effect of salt and heavy metal stress is organ specific.The metal uptake values of the plants are listed as cress > parsley > rocket.The susceptibility of plants to salt stress (9 dS m−1) is higher than that of heavy metal stress.Plants are hyper‐accumulative in terms of lead absorption. [ABSTRACT FROM AUTHOR] |