Autor: |
Lyu, Chao, Dai, Chenghai, Tan, Yiwei |
Předmět: |
|
Zdroj: |
Nano Research; Apr2024, Vol. 17 Issue 4, p2499-2508, 10p |
Abstrakt: |
There are more challenges for alkaline hydrogen evolution reaction (HER) via simultaneously expediting the electron-coupled water dissociation process (Volmer step) and the following electrochemical H2 desorption (Heyrovsky step). Hybrid amorphous electrocatalysts are highly desirable for efficient hydrogen evolution from water-alkali electrolyzers due to the bifunctionality for the different elementary steps of HER and optimal interactions with water molecules and the reactive hydrogen intermediates (Had). Herein, the synthesis of amorphous hybrid ultrathin (tungsten oxide/nickel hydroxide) hydrate (a-[WO3/Ni(OH)2]·0.2H2O) nanosheets on nickel foam (NF) for efficient alkaline HER is described. The structural and composition features of a-[WO3/Ni(OH)2]·0.2H2O are characterized in detailed. The resulting a-[WO3/Ni(OH)2]·0.2H2O/NF electrocatalyst with the synergistic effect of both hybrid components for the HER elementary steps shows greatly improved the activity and durability for the HER with a low overpotential of −41 and −163 mV at −10 and −500 mA·cm−2, respectively, a Tafel slope as low as −72.9 mV·dec−1, and long-term stability of continuous electrolysis for at least 150 h accompanying by inappreciable overpotential change in 1 M KOH. In the hybrid a-[WO3/Ni(OH)2]·0.2H2O, Ni(OH)2 and WO3 moieties are separately responsible for accelerating dissociative adsorption of water and weakening Had adsorption strength, which is beneficial to the improvement of the alkaline HER activity. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|