Abstrakt: |
Hugan Buzure granule (HBG) is a traditional prescription in Uygur medicine that is known for its hepatoprotective properties. In a previous study, the authors have investigated the mechanism through which HBG protects against immune liver injury (ILI) by regulating immune balance and inhibiting apoptosis mediated by the IRF1/JNK signaling pathway. However, not all mechanisms are thoroughly explored. To address this issue, the present study further investigated the mechanism by which HBG reduced concanavalin A (ConA)-induced ILI in mice using network pharmacology and in vivo experiments. Initially, the livers of the mice were examined through pathological sections, which prompted further screening. The TCMSP, PharmMapper, and GeneCards databases were employed to identify the active compounds and key targets of HBG in the treatment of ILI. Subsequently, the key targets and related signaling pathways were screened using network pharmacology and molecular docking. The efficacy and mechanism of HBG against ILI were explored in a ConA-induced mouse model. Key proteins were analyzed, and their expression levels were detected using Western blotting analysis. The network pharmacology analysis revealed 16 compounds and 53 targets associated with HBG. The component-target-pathway (C-T-P) network and molecular docking indicated that EGFR, HRAS, AKT1, and PIK3R1 were the key targets of HBG in the context of ILI. TUNEL staining results demonstrated that HBG significantly reduced apoptosis in mice with ILI. Moreover, HBG markedly upregulated the expression of p-EGFR, Ras, p-AKT, p-PI3K, p-BAD, and Bcl-2, while down-regulating the levels of Bax, cleaved-caspase 9, and cleaved-caspase 3 proteins, as compared to the ConA group. These findings suggested that HBG alleviated ILI by inhibiting apoptosis through the EGFR/Ras/PI3K/AKT signaling pathway. [ABSTRACT FROM AUTHOR] |