Experimental Investigation of Polymer and Nanomaterial modified Asphalt Binder.

Autor: Emmaima, Ali Mohamed, Ali, Shaban Ismael Albrka, Gallouz, Khalifa Salem
Předmět:
Zdroj: Engineering, Technology & Applied Science Research; Feb2024, Vol. 14 Issue 1, p12869-12874, 6p
Abstrakt: Modifying the asphalt binder and mixture becomes one of the best ways to mitigate pavement distress and increase the service life of constructed road networks. This study aimed to evaluate the influence of modified asphalt binders with the best different percentages of polymer and nanoparticles. Typical asphalt binder (penetration, softening point, and viscosity) and frequency sweep tests were used to evaluate the physical and rheological properties of modified asphalt binders with 5% Acrylonitrile Styrene Acrylate (ASA), 5% aluminum oxide nanoparticles (Al2O3), and 5% calcium carbonate (CaCO3). The results showed that the physical properties of all modified blends improved compared to those of the base asphalt binder. The improvement in softening point was up to 19%, the penetration reduction was nearly 69%, and the sensitivity to elevated temperatures was reduced by up to 13%. Evaluation of the rheological properties showed that modified asphalt with 5% Al2O3 binder had the highest permanent deformation resistance, followed by 5% ASA. The 5% CaCO3 binder showed a small improvement compared to the other samples. The results showed that the 5% Al2O3 binder had the highest complex modulus and the lowest phase angle, which means that it has the best viscoelastic properties. Therefore, it can be recognized as the best asphalt binder among the modified binders in this study. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index