Naïve Bayes Classifiers and accompanying dataset for Pseudomonas syringae isolate characterization.

Autor: Fautt, Chad, Couradeau, Estelle, Hockett, Kevin L.
Předmět:
Zdroj: Scientific Data; 2/7/2024, Vol. 11 Issue 1, p1-8, 8p
Abstrakt: The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index