Autor: |
Wiessler, Anna-Lena, Hasenmüller, Ann-Sofie, Fuhl, Isabell, Mille, Clémence, Campo, Orlando Cortes, Reinhard, Nicola, Schenk, Joachim, Heinze, Katrin G., Schaefer, Natascha, Specht, Christian G., Villmann, Carmen |
Předmět: |
|
Zdroj: |
Journal of Neuroscience; 1/10/2024, Vol. 44 Issue 2, p1-16, 16p |
Abstrakt: |
Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRβ, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRβ that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRβ under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRβ was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRβ enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2β complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|