Autor: |
Koch, Sarah, Lindsey, Kathryn, Sharland, Thomas |
Předmět: |
|
Zdroj: |
IMRN: International Mathematics Research Notices; Jan2024, Vol. 2024 Issue 2, p1568-1605, 38p |
Abstrakt: |
Let |$f$| be a degree |$d$| bicritical rational map with critical point set |$\mathcal{C}_f$| and critical value set |$\mathcal{V}_f$|. Using the group |$\textrm{Deck}(f^k)$| of deck transformations of |$f^k$| , we show that if |$g$| is a bicritical rational map that shares an iterate with |$f$| , then |$\mathcal{C}_f = \mathcal{C}_g$| and |$\mathcal{V}_f = \mathcal{V}_g$|. Using this, we show that if two bicritical rational maps of even degree |$d$| share an iterate, then they share a second iterate, and both maps belong to the symmetry locus of degree |$d$| bicritical rational maps. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|