A bicomponent synergistic MoxW1−xS2/aluminum nitride vdW heterojunction for enhanced photocatalytic hydrogen evolution: a first principles study.

Autor: Xu, Liang, Li, Can, Xiong, S. X., Tang, Shuaihao, Xu, Zhiqiang, Cao, Lei, Tao, Ji, Zhang, Ying, Dong, Kejun, Wang, Ling-Ling
Zdroj: Physical Chemistry Chemical Physics (PCCP); 1/28/2024, Vol. 26 Issue 4, p2973-2985, 13p
Abstrakt: The coupling of two-dimensional van der Waals heterojunctions is an effective way to achieve photocatalytic hydrogen production. This paper designs the MoxW1−xS2/AlN (x = 0, 0.25, 0.5, 0.75, 1) van der Waals heterojunction as a possible photocatalytic material. By using first-principles calculations, the effects of different Mo/W ratios on the band gap and photocatalytic hydrogen production performance of heterojunctions were investigated. The results show that the heterojunction is a direct Z-scheme photocatalyst and can achieve overall water splitting. By calculating the absorption spectrum, it is found that the heterojunction has a wider visible light absorption range when the bimetal is added, and there is still a strong absorption peak at 615 nm. With the increase of the Mo atom ratio, the absorption spectrum is red-shifted. The Gibbs free energy of the two-component Mo0.5W0.5S2/AlN heterojunction is only −0.028 eV. Our work provides a new perspective for the modification of 2D transition metal dichalcogenide photocatalytic heterojunctions. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index