Exploring the role of preferential solvation in the stability of globular proteins through the study of ovalbumin interaction with organic additives.

Autor: Tretyakova, Tatyana, Makharadze, Maya, Uchaneishvili, Sopio, Shushanyan, Mikhael, Khoshtariya, Dimitri
Předmět:
Zdroj: AIMS Biophysics; 2023, Vol. 10 Issue 4, p440-452, 13p
Abstrakt: The impact of denaturing and stabilizing osmolytes on protein conformational dynamics has been extensively explored due to the significant contribution of protein solvation to the stability, function, malfunction and regulation of globular proteins. We studied the effect of two nonspecific organic molecules, urea, which is a conventional denaturant, and dimethyl sulfoxide (DMSO), which is a multilateral organic solvent, on the stability and conformational dynamics of a non-inhibitory serpin, ovalbumin (OVA). A differential scanning microcalorimetry (DSC) experimental series conducted in the phosphate buffer solutions containing 0-30 % of additives revealed the destabilizing impact of both urea and DMSO in a mild acidic media, manifested in the gradual decrease of thermal unfolding enthalpy and transition temperature. These findings differ from the results observed in our study of the mild alkaline DMSO buffered solutions of OVA, where the moderate stabilization of OVA was observed in presence of 5-10% of DMSO. However, the overall OVA interaction patterns with urea and DMSO are consistent with our previous findings on the stability and conformational flexibility of another model globular protein, α-chymotrypsin, in similar medium conditions. The obtained results could be explained by preferential solvation patterns. Positive preferential solvation of protein by urea in urea/water mixtures mainly weakens the hydrophobic interactions of the protein globule and eventually leads to the disruption of the tertiary structure within the whole range of urea concentrations. Alternatively, under certain experimental conditions in DMSO/water mixtures, positive preferential solvation by water molecules can be observed. We assume that the switch to the positive preferential solvation by DMSO, which is shown to have a soft maximum around 20-30% DMSO, could be shifted towards lower additive concentrations due to the intrinsic capability of ovalbumin OVA to convert into a heat-stable, yet flexible set of conformations that have increased the surface hydrophobicity, characteristic to molten-globule-like states. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index