Exogenous mobile genetic elements and their associated integrons drive the enrichment of antibiotic-resistant genes in the river of a valley basin city (Lanzhou, China).

Autor: Wei, Fengyi, Xia, Hui, Huang, Kui, Wei, Chengchen
Předmět:
Zdroj: Environmental Science & Pollution Research; Jan2024, Vol. 31 Issue 2, p3195-3206, 12p
Abstrakt: River is a unique source of drinking water in valley-type cities, affecting local urban development and human lifestyles. However, the key driving factors for dissemination of antibiotic-resistant genes (ARGs) in valley-type urban environments remain unclear. This study aimed to investigate the distribution of ARGs in the Yellow River and to clarify the driving factors of ARGs in a typical valley basin city (Lanzhou, China). The seven selected ARGs with higher abundances including tetracycline resistance genes (tetM, tetX), macrolide resistance genes (ermB, ermF, ereA), and sulfonamide resistance genes (sul1, sul2) were detected. The results showed that the total absolute abundance of all the selected ARGs varied from 9.97 × 1012 to 1.04 × 1015 copies/L in the water body, with higher abundances in the wet season, relative to the dry season. Among these, sulfonamide resistance genes (sul1, sul2) displayed the highest absolute abundance in the river and soil. The ARGs and mobile genetic elements (MGEs) were significantly correlated with bacterial abundance, dissolved organic carbon (DOC), ammonia nitrogen (NH4+), and total nitrogen (TN) levels in the water environment (Mantel test, P < 0.01). Structural equation modeling revealed the direct input of point-source and nonpoint-source ARGs in this area contributed less to the overall level of the ARGs in the water. Among the multiple drivers, the MGEs derived from wastewater treatment plant and anthropogenic nonpoint area positively and directly affected the ARG profiles in water (P < 0.01), rather than the factors of bacterial abundance and physicochemical properties. According to this study, the exogenous MGEs from anthropogenic activities are the main driver for the enrichment of ARGs in the valley-type urban river environment. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index