Autor: |
Zhang, Wenye, Yang, Chen, Zou, Lujia, Zang, Yiwen, Hu, Jimeng, Hu, Yun, Xu, Chenyang, Liu, Rongzong, Wang, Hao, Xiong, Zuquan |
Zdroj: |
Journal of Applied Genetics; Feb2024, Vol. 65 Issue 1, p103-112, 10p |
Abstrakt: |
At most of the times, patients who are diagnosed with kidney cancer should be provided with systemic treatment as drug resistance is a challenging issue in the treatment of this disease. The progression of the cancer can be inhibited with the help of mTOR inhibitors namely RAD001 (everolimus) and MTI-31. In literature, it has been revealed that these mTOR inhibitors have the potential to stimulate autophagy. This degradation pathway boosts the survival rate of the cancerous cells that are subjected to anti-cancer therapy. In this study, CCK8, colony formation assays, and ethynyl deoxyuridine (EdU) analysis were conducted to detect cell proliferation. Furthermore, Transwell assays were also conducted for cell migration analysis. In addition to these, the researchers also performed the flow cytometry process to identify the cells that are undergoing apoptosis. In vivo, experiments were conducted to measure the growth of tumors and metastasis. In this study, the treatment provided through a combination of MTI-31 and RAD001 significantly inhibited the kidney cancer cells' proliferation and tumor growth. Furthermore, there was a notable reduction in the migration and invasion of kidney cancer cells upon the neighboring cells. The outcomes from the mechanistic studies infer that the combination of MTI-31 and RAD001 increases the LC3 levels, which in turn translates into the activation of autophagy. To conclude, the combination of MTI-31 and RAD001 improves the anti-cancerous impact produced by RAD001 in vivo through the promotion of autophagy. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|