Autor: |
Legros, Hélène, Czas, Janina, Luo, Yan, Woodland, Sarah, Sarkar, Chiranjeeb, Shirey, Steven B., Schulze, Dan, Pearson, D. Graham |
Předmět: |
|
Zdroj: |
Mineralium Deposita; Feb2024, Vol. 59 Issue 2, p373-396, 24p |
Abstrakt: |
Mantle xenoliths in a Mesoproterozoic lamprophyre dyke at Elliot Lake, Ontario, located on the east margin of the Midcontinent Rift (MCR), erupted at ~ 1.1 Ga. These xenoliths enable a study of critical metal enrichment in the sub-cratonic lithospheric mantle (SCLM). Whole-rock major and trace element data from a suite of peridotite xenoliths document a combination of melt depletion and cryptic metasomatic processes. Trace element whole-rock and mineral systematics show a specific endowment in Nb-U-REE (ca. 5–30 ppm mean value), linked to carbonated silicate metasomatism. Geochronological data from the lamprophyre host (Rb–Sr age of 1112.8 ± 4.95 Ma) and the mantle xenoliths (Re-Os) indicate that our samples document the state of the mantle during the earlier stages of magmatism of the MCR. Mineral thermobarometry reveals a hot geotherm reflecting the thinning of the Superior cratonic root to 110 km. Most of the Nb-U-REE deposits and anomalies associated with the MCR event are located around Lake Superior. Here we document for the first time north of Lake Huron, metasomatic processes in the lithosphere that may have created Nb-U-REE metal endowment. The mantle events documented here relate to other observations made in the Slave and North China craton and show how silico-carbonated mid-lithospheric metasomatism up-grades the cratonic lithospheric mantle into a fertile source. Comparison with other small degree melts such as kimberlites, and mantle metasomes related to the MARID suite, show that small degree melts are very efficient at transporting critical metals from the HFSE group plus U and Th, into Earth's lithosphere. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|