Development of hybrid composite with natural fillers for mechanical property and machinability study.

Autor: S P, Jani, A, Sujin Jose, C, Rajaganapathy, M, Adam Khan
Předmět:
Zdroj: Progress in Rubber, Plastics & Recycling Technology; Feb2024, Vol. 40 Issue 1, p17-32, 16p
Abstrakt: The urge to build a more environmentally friendly future has motivated researchers to examine composites outside of synthetic fiber and continue to consider natural fibre polymer composite. This present research, the hybrid bio composite was developed by bio fillers and natural fibres. The preliminary investigation was done to examine the possibility of using natural fillers (palm and coconut shell) in natural fibre (hemp and basalt) reinforced polymer (NFRP) composite for manufacturing application. In that way initially mechanical (tensile and flexural) properties testing were done on four different combinations of NFRP by using palm and coconut shell particles, to their influence on mechanical properties (tensile stress 278 MPa and flexural stress 330 MPa). It was found that 5% wt. palm + coco shell fillers combination hybrid composite presented good results in mechanical properties. Then 5% wt. palm + coco fillers was added in the matrix phase of NFRP composite was developed and study the machinability properties by using Abrasive Water Jet Machining (AWJM). NFRP machining in the relationships of material removal rate (MRR), kerf angle and surface roughness has been experimentally examined for various process parameters (nozzle pressure, distance stand and transverse speed). The research values for quality properties (MRR, Kt and Ra) were analysis-based on the trimming factors by developing the Taguchi method. The influence of optimized input process parameters on quality features were examined by utilizing experiential models. From this study, it is noticeable that, filler material in natural fiber composites reduces the kerf angle and the low and very high traverse speed leads the wide disparity in kerf inclination. For obtaining the good surface roughness and material removal rate medium traverse speed and medium stand of distance is the significant parameter respectively and moreover impact of jet pressure on surface finish is 3 times lower than the impact supplied to the surface finish by traverse speed [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index