Abstrakt: |
There are several factors for vehicle accidents during driving such as drivers' negligence, drowsiness, and fatigue. These accidents can be avoided, if drivers are warned in time. Moreover, recent developments in computer vision and artificial intelligence (AI) have helped to monitor drivers and alert them in case they are not concentrating on driving. The AI techniques can extract relevant features from expressions of driver's face, such as eye closure, yawning, and head movements to infer the level of sleepiness. In addition, they can acquire biological signals from the driver's body, and indications from the vehicle behavior. This paper provides a comprehensive review of the detection techniques of drowsiness and fatigue of drivers using machine learning (ML) and deep learning (DL). The current techniques for this application are classified into four categories: image- or video-based analysis during the driving, biological signal analysis for drivers, vehicle movement analysis, and hybrid techniques. A review of supervised techniques is presented for detecting fatigue and drowsiness on different datasets, with a comparison of the various techniques in terms of pros and cons. Results are presented in terms of accuracy of detection for each technique. The results are discussed according to the recent problems and challenges in this field. The paper also highlights the applicability and reliability of the different techniques. Furthermore, some suggestions are presented for the future work in the field of driver drowsiness detection (DDD). [ABSTRACT FROM AUTHOR] |