Abstrakt: |
Selenium (Se), an essential trace element, plays an important role in the antioxidative defense mechanism, and it has been proven to improve fertility and reproductive efficiency in dairy cattle. The present study evaluated the potential protective action of Se supplement of in vitro maturation (IVM) media on the maturation and subsequent development of bovine cumulus-oocyte complexes (COCs) exposed to heat stress (HS). The treatment with Se improved the viability of cumulus cells (CCs) and oocytes (P < 0.05). The proportion of oocytes reached metaphase II (MII) and those arrested at metaphase I (MI) was greater and lower in treatment than control respectively (P < 0.05). Supplementation with Se increased the percentage of cleaved embryos, total blastocysts, and blastocyst/cleavage ratio (P < 0.05). Moreover, the upregulation of CCND1, SEPP1, GPX-4, SOD, CAT, and downregulation of GRP78, CHOP, and BAX in both Se-treated CCs and oocytes were recorded. The upregulation of NRF2 was detected in Se-treated CCs other than in oocytes, which showed upregulation of IGF2R and SOX-2 as the markers of quality as well. Se supplement in IVM media improved the viability, maturation, and the level of transcripts related to antioxidant defense and quality of heat-treated oocytes, which coincided with greater subsequent development outcomes. Se ameliorated the viability of CCs along with upregulation of antioxidative candidate gene expression and downregulation of apoptosis-related ones to support their protective role on restoring the quality of oocytes against compromising effects of HS. [ABSTRACT FROM AUTHOR] |