Autor: |
Bai, Yang, Pang, Yin, Wu, Zheng, Li, Xi, Jing, Jiang, Wang, Hongbin, Zhou, Zheng |
Předmět: |
|
Zdroj: |
Water (20734441); Dec2023, Vol. 15 Issue 24, p4314, 18p |
Abstrakt: |
A manganese dioxide-modified red mud (Mn-RM) was developed as an adsorbent for the effective removal of lead ions (Pb2+) from wastewater. Various methods were used to characterize the prepared Mn-RM, analyze its adsorption performance, and evaluate the associated environmental risks post-adsorption. The results revealed that Mn-RM has a large surface area (38.91 m2/g) and a developed porous structure (0.02 cm3/g). The adsorption process exhibited good agreement with the Langmuir isotherm and pseudo-second-order kinetic models, showcasing a theoretical maximum saturation adsorption capacity of 721.35 mg/g. The adsorption mechanism primarily involves electrostatic attraction, ion exchange, and chemical precipitation. The optimal treatment conditions were determined by utilizing a response surface model, resulting in a maximum Pb2+ removal efficiency of 87.45% at pH 5.21, a dosage of 0.83 g/L, and an initial concentration of 301.04 mg/L. The risk assessment code (RAC) for each heavy metal in Mn-RM was less than 1%, indicating low environmental risk. Furthermore, the synthetic toxicity index (STI) values showed a significant decrease post-treatment. This study introduces the concept of "controlling waste with waste", offering a cost-effective approach to both utilizing red mud and removing aqueous Pb2+ while ensuring environmental safety and minimal ecological impact. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|