Autor: |
Geist, Lena, Wolfer, Renate, Thiem, Richard, Thielicke, Matthias, Eichler-Löbermann, Bettina, Eulenstein, Frank, Müller, Marina E. H. |
Předmět: |
|
Zdroj: |
Agronomy; Dec2023, Vol. 13 Issue 12, p2900, 22p |
Abstrakt: |
Phosphorous (P) starter fertilization can increase maize (Zea mays L.) yield. Widespread application in soils with sufficient P availability leads to environmental risks. Subsequently, alternative strategies to support the maize plant's early development are needed to lower P surpluses. Here, we conducted field experiments comparing standard starter fertilizer diammonium phosphate (DAP) (20.1 kg P ha−1) to microgranular fertilizer (MG) (2.4 kg P ha−1) and combined in-furrow inoculation with Bacillus atrophaeus and mycorrhizal fungi (Rhizoglomus irregulare, Funneliformis mosseae, and Funneliformis caledonium), alone and in combination. The soil microbial community inside and between the maize rows was monitored by quantitative PCR (qPCR)-based quantification of eight fungal and bacterial groups. The yield did not vary between fertilization with DAP or MG and no fertilizer control. The combined microorganism inoculum (MO), however, enhanced the yield by 4.2%. The soil microbial community composition was not affected by the MO application. However, on one field site and inside the rows, it leads to a significant increase in overall microbial gene copy numbers by 9.3% and a significant decrease in the relative abundance of the bacterial phylum of Bacillota (Firmicutes) by 18%. The in-furrow MO application is thus a promising option for starter fertilizer replacement. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|