Autor: |
Nishimura, Akira, Hanyu, Ryo, Mae, Homare, Senoue, Hiroki, Hu, Eric |
Předmět: |
|
Zdroj: |
Catalysts (2073-4344); Dec2023, Vol. 13 Issue 12, p1477, 9p |
Abstrakt: |
Since photocatalytic reactions are surface reactions, enhancing gas movement around the photocatalyst could improve photocatalytic CO2 reduction performance. A new approach using black body material to enhance the gas movement around the photocatalyst based on the natural thermosiphon movement of gases around a photocatalyst has been proposed and confirmed experimentally, but the heat-transfer mechanism of the phenomena has not yet been clarified. The aim of this study is to clarify the corresponding heat-transfer mechanism. This study calculated the temperature of the CO2/NH3 gas mixture around a P4O10/TiO2 photocatalyst using the heat-transfer formula. No difference was found between the temperature increase (Tg) from the temperature at the beginning of the CO2 reduction experiment (Tini) and the temperature of the CO2/NH3 gas mixture measured experimentally via thermocouple (Te) under the following illumination conditions: a Xe lamp with visible light (VIS) + infrared light (IR) and IR only. The heat-transfer model proposed in this study predicts Tg well under illumination from a Xe lamp with VIS + IR as well as under IR illumination only. On the other hand, the difference found between Tg and Te was as large as 10 °C under illumination from a Xe lamp with ultraviolet light (UV) + VIS + IR. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|