Autor: |
Igali, Dastan, Clifford, Omonini, Perveen, Asma, Zhang, Dichuan, Wei, Dongming |
Předmět: |
|
Zdroj: |
Designs; Dec2023, Vol. 7 Issue 6, p138, 23p |
Abstrakt: |
The use of coat-hanger dies is prevalent in the plastic film and sheet extrusion industry. The product quality and the power of the extrusion machine depend on the uniformities of the fluid velocity at the exit and the pressure drop. Die manufacturers face the challenge of producing coat-hanger dies that can extrude materials uniformly and with a minimal pressure drop. Previous studies have analyzed the die outlet's flow homogeneity and pressure drop using various numerical simulations. However, the combination of the scheme programming language together with the Adjoint Method of Optimization has yet to be attempted. The adjoint optimization method has been demonstrated to be beneficial in addressing issues related to shape optimization problems and it may also be beneficial in optimizing the design of dies used in polymer melt extrusion. In this study, the proposed innovations involve incorporating both the Scheme programming language and Adjoint solver to examine and optimize the coat hanger's flow homogeneity and pressure drop. Before optimization, the outlet velocity was almost 10 times higher at the die center than at the edges but after optimization, it became more uniform. The proposed optimized coat-hanger die geometry results in more uniform melt flow as demonstrated by the velocity contour plot and the outlet velocity graph in the die slit area, reducing the deviation value from 0.097 to 0.015. Additionally, the mass flux variance across the die outlet decreased by 71.6% from 0.015069 kg m−2 s−1 to 0.004281 kg m−2 s−1. Therefore, using this method reduces the amount of time wasted on trial and error or other optimization techniques that may be limited by design constraints. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|