Autor: |
Guin, Surajit, Halder, Sasthi Charan, Ghosh, Sourav Ranjan, Jana, Atish Dipankar |
Předmět: |
|
Zdroj: |
Journal of Molecular Modeling; Dec2023, Vol. 29 Issue 12, p1-13, 13p |
Abstrakt: |
Context: Dynamic metal nanoclusters have become a hot area of research in the field of nanoscience and nanotechnology due to their potential applications in micro devices. One such dynamic cluster is a quasi-planar ground state (GS) Al13+ cluster which exhibits an electric field driven up and down flipping motion of the flexible tail which oscillates with respect to the mean plane. A Car-Parrinello molecular dynamics (CPMD) simulation has been carried out to understand the nature of dynamics of the cluster. CPMD simulation study reveals that the flexible tail region of the Al13+ isomeric system (two ground states M1, M2 and a transition state TS connecting them) can be engaged in a systematic up down flipping motion by the application of a transverse electric field. A saw tooth electric field of amplitude 5.19 V/nm is sufficient to induce the up-and-down flipping oscillation of the cluster, which has an average oscillation frequency of around 20 THz. AIM, NICS and AdNDP analyses also have been carried out to understand the fluxional nature of the cluster from the electronic structural perspective. Electronic structural analysis of selected optimized intermediate states in the presence of transverse electric field has also been analyzed to correlate the electronic structure with the dynamic nature of the cluster. Methods: Single-point energies of all intermediate states between two minima of Al13+ clusters connected through a transition state cluster. Optimized geometries of Al13+ clusters in the presence of electric field of different strengths have been carried out by using the Gaussian 03 package. 6–311 + G(d) basis set and B3LYP hybrid density functional have been utilized for these studies. To establish the flipping motion, Car-Parrinello molecular dynamics (CPMD) has been performed using the cp.x module of the Quantum ESPRESSO 6.3.0 program package using the Perdew-Burke-Ernzerhof (PBE) functional, plane-wave basis set and ultrasoft pseudopotentials. ORTEP-3 and POV ray-3.7 software packages have been used for visualization and graphics generation. Atoms in molecule (AIM), Adaptive Natural Density Partitioning (AdNDP) analysis have been carried out using Multiwfn 3.7 program package. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|