Abstrakt: |
Tuberculosis (TB) remains one of the most afflictive bacterial infections globally. In high burden TB countries, surveillance, diagnosis and treatment of drug resistant TB (RR and X/MDRTB) display a crucial public health challenge. Therefore, we need new TB vaccines; diagnostic and therapeutic strategies to briskly prevent disease promotion; reduce drug-resistant TB and protect everyone from disease. The study identified various potent membrane and cell wall M. tuberculosis glycolipoproteins that are relevant for diagnostics, drug and vaccine discovery. A M. tuberculosis Proskauer and Beck broth culture was extracted for total proteins by ammonium sulfate method. After ConA-Affinity Chromatography reputed glycoproteins were collected followed by 2DE gel electrophoresis and LC Mass spectrometry. A total of 293 glycoproteins were identified using GlycoPP and IEDB database. Probable conserved trans-membrane protein (Rv0954), LpqN (Rv0583), PPE68 (Rv3873), Phosphate-binding protein (Rv0932c), PPE61 (Rv3532) and LprA (Rv1270c), had the highest glycosylation percentage value with 13.86%, 11.84%, 11.68%, 11.1%, 10.59% and10.2%, respectively. Our study discloses several dominant glycoproteins that play roles in M. tuberculosis survival, and immunogenicity. These include glycoproteins involved in antigenicity, transport and biosynthesis of M. tuberculosis cell envelope, pathogen-host interaction and drug efflux pumps, which are considered as a feasible drug targets or TB new vaccine candidates. [ABSTRACT FROM AUTHOR] |