Plant Extract-Mediated Synthesis of Ag-Doped ZnO: Eco-Friendly Nanomaterial for Environmental Restoration, Microbial Inhibition, Cell Toxicity, Antioxidant Potential, and Sensing.

Autor: V. Jagadeeswar, Dhinesh, V., Roopan, S. Mohana, Samuel, E. James Jabaseelan
Předmět:
Zdroj: Colloid Journal; Oct2023, Vol. 85 Issue 5, p827-845, 19p
Abstrakt: Green synthesis is a unique and eco-friendly method of producing nanoparticles that employs plant extracts as reducing and stabilizing agents. This approach offers numerous advantages, including low cost, biocompatibility, sustainability, and ease of operation. ZnO has been applied in various fields such as optical, electrical, magnetic, catalytic, and biological. Drawbacks such as high band gap of 3.37 eV, faster recombination of generated electron hole pair, lower antibacterial activity hinders ZnO nanoparticles utilization. Metal doping is a technique that modifies the nanoparticle's characteristics by adding impurities into their lattice which improves optical, electrical, magnetic, catalytic, and biological properties of the host material. Silver doped zinc oxide (Ag/ZnO) is one of the promising materials for metal doped nanoparticles due to its enhanced antibacterial, anticancer, sensing, and photocatalytic capabilities. In this paper, we reviewed plant mediated green synthesis of Ag/ZnO nanoparticles and their multifunctional properties for biomedical and environmental application as well as proposed mechanisms of their action. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje