Autor: |
Rana, Md Masud, Islam, Md Manowarul, Talukder, Md. Alamin, Uddin, Md Ashraf, Aryal, Sunil, Alotaibi, Naif, Alyami, Salem A., Hasan, Khondokar Fida, Moni, Mohammad Ali |
Předmět: |
|
Zdroj: |
IET Image Processing (Wiley-Blackwell); 12/11/2023, Vol. 17 Issue 14, p3959-3975, 17p |
Abstrakt: |
Alzheimer's disease, often known as dementia, is a severe neurodegenerative disorder that causes irreversible memory loss by destroying brain cells. People die because there is no specific treatment for this disease. Alzheimer's is most common among seniors 65 years and older. However, the progress of this disease can be reduced if it can be diagnosed earlier. Recently, artificial intelligence has instilled hope in the diagnosis of Alzheimer's disease by performing sophisticated analyses on extensive patient datasets, enabling the identification of subtle patterns that may elude human experts. Researchers have investigated various deep learning and machine learning models to diagnose this disease at an early stage using image datasets. In this paper, a new Deep learning (DL) methodology is proposed, where MRI images are fed into the model after applying various pre‐processing techniques. The proposed Alzheimer's disease detection approach adopts transfer learning for multi‐class classification using brain MRIs. The MRI Images are classified into four categories: mild dementia (MD), moderate dementia (MOD), very mild dementia (VMD), and non‐dementia (ND). The model is implemented and extensive performance analysis is performed. The finding shows that the model obtains 97.31% accuracy. The model outperforms the state‐of‐the‐art models in terms of accuracy, precision, recall, and F‐score. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|