On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals.

Autor: Mohr, Gunther, Altenburg, Simon J., Hilgenberg, Kai
Předmět:
Zdroj: Journal of Laser Applications; Nov2023, Vol. 35 Issue 4, p1-10, 10p
Abstrakt: The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion process. Development of material and machine specific process parameters is commonly based on the results acquired from small cubic test coupons of ∼10 mm edge length. Such cubes are usually used to conduct the optimization of process parameters to produce dense materials. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part, and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation in thermographically measured intrinsic preheating temperatures was triggered by the alteration of interlayer times and a variation in cross-sectional areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index