Autor: |
Kim, Dong Uk, Park, Young Jae, Kim, Do Yun, Jeong, Youngjae, Lim, Min Gi, Hong, Myung Seok, Her, Man Jae, Rah, Yoonhyuk, Choi, Dong Ju, Han, Sangyoon, Yu, Kyoungsik |
Zdroj: |
Nature Photonics; Dec2023, Vol. 17 Issue 12, p1089-1096, 8p |
Abstrakt: |
Programmable photonic integrated circuits offer exciting opportunities for optoelectronic signal processing, computing and communications in a number of emerging applications in classical and quantum photonics. In this work, we show the array-level demonstration of tunable couplers and phase shifters with capacitive electrostatic microelectromechanical actuators in a recirculating mesh network. The overall fabrication process is compatible with the conventional wafer-level passive silicon photonics platform. Extremely low unit-level standby power consumption of <10 femtowatts and reconfiguration energy of <40 picojoules with <11 V programming voltages offer well-balanced, scalable routes for efficient phase and amplitude modulation of the guided lightwaves with sub-decibel optical losses. The extinction ratios of the continuously tunable directional coupler exceed 30 dB. Full 2π-phase shifting can be achieved with a modulation efficiency of less than 0.075 V cm and a phase-dependent insertion-loss variation of 0.01 dB. Programmable photonic arrays with <10 fW (per unit) standby power consumption, <40 pJ (per unit) reconfiguration energy and <11 V programming voltages are demonstrated. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|