NUMERICAL SIMULATION AND OPTIMIZATION OF STEEL TUBE BILLET HEATING PROCESS IN ROTARY HEARTH FURNACE USING COMPUTATIONAL FLUID DYNAMICS.

Autor: Likun YANG, Fuyong SU, Zhi WEN, Shuming TAO, Guangjie BAI, Chunmei LUAN
Předmět:
Zdroj: Thermal Science; 2023, Vol. 27 Issue 5B, p4179-4192, 14p
Abstrakt: Billet reheating is an important part of the steel production process. Since the production process will adopt different tube billet arrangement strategies, and the condition of the furnace hearth will also change due to long-term operation and accumulation of iron oxide scales, these factors will inevitably affect heating efficiency and temperature distribution uniformity of the tube billet, thereby affecting the quality of the final product. In this study, a physical and mathematical model was established for a 48 m diameter rotary hearth furnace of the seamless steel pipe production-line and typical 300 mm diameter tube billets of different lengths. Commercial FLUENT code was used to carry out CFD numerical simulation research on the influence of the aforementioned factors. Optimizing and adjusting strategies under different arrangement strategies were proposed, and the influence of furnace hearth condition change on heating effect was studied. The methods and simulation approach of this paper also have guidance for the billet heating control in similar continuous heating furnaces. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index