Autor: |
Hwang, Sung Ho, Mehdi, Syed Muntazir, Kim, Tae Ho |
Předmět: |
|
Zdroj: |
Lubricants (2075-4442); Nov2023, Vol. 11 Issue 11, p480, 18p |
Abstrakt: |
Gas foil thrust bearings (GFTBs) have been successfully used to support the axial load of oil-free microturbomachinery with low drag friction due to the low viscosity of gas or air used as a bearing lubricant. However, the widespread use of GFTBs in various high-power turbomachinery still needs reliable test data and an accurate predictive model. This research measures the height profile of a test GFTB to determine its actual incline geometry and estimate the drag torque of the GFTB. The measured GFTB height profile demonstrates that the incline geometry is closer to a quadratic curve than a line, which has been conventionally used to model GFTBs mathematically. The newly developed GFTB test rig is used to measure the lift-off speed, drag torque, and maximum load capacity of the test GFTB. A series of rotor speed-up tests estimate that the lift-off speeds of the GFTB increase with the increase in preloads. The maximum load capacity is determined by increasing the static load on the GFTB until a sudden sharp peak in the drag torque appears. The new GFTB model using quadratic incline geometry is in suitable agreement with the measured height profile of the GFTB incline and measured drag torque during the load capacity test. In addition, a comparison of the predicted GFTB performances reveals that the quadratic incline geometry model predicts a higher load capacity than the linear model. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|