The Impact of Top-Layer Sliced Lamella Thickness and Core Type on Surface-Checking in Engineered Wood Flooring.

Autor: Grubîi, Victor, Johansson, Jimmy
Předmět:
Zdroj: Forests (19994907); Nov2023, Vol. 14 Issue 11, p2250, 11p
Abstrakt: Surface-checking is a significant quality issue of veneer and sliced lamellae-based wood products. This study explores how surface-checking in sliced lamellae-based engineered wood Flooring (EWF) is influenced by two key structure parameters: core type and top-layer thickness. The core types assessed were a standard solid wood lamellae with a veneer back-end layer (S), a standard solid wood lamellae core with veneer back-end layers on the two sides (DS), and a single-layer oriented strand board (OS) core. The EWF element's top-layer lamellae were plain sliced at nominal dimensions of 1.5, 2.5, 3.5, and 4.5 mm from freshly sawn slabs of European oak (Quercus spp.). The surface-checking of EWF specimens was quantified based on a digital image correlation (DIC) method, which outputs a surface-checking index. The surface-checking results were evaluated using a Tweedie compound Poisson data distribution to fit a general linear model. The model evaluated the impact of individual factors, sliced lamellae thickness and core type, and their interaction. The checking index confidence intervals were estimated using a bootstrapping technique. Findings reveal a significant interaction between studied factors and provide insight into optimizing top-layer thickness and core construction to diminish surface-checking. A low sliced lamella thickness on standard solid wood lamellae core resulted in low surface-checking, deemed relevant for further research. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index