Abstrakt: |
Objectives: To determine whether image reconstruction with a higher matrix size improves image quality for lower extremity CTA studies. Methods: Raw data from 50 consecutive lower extremity CTA studies acquired on two MDCT scanners (SOMATOM Flash, Force) in patients evaluated for peripheral arterial disease (PAD) were retrospectively collected and reconstructed with standard (512 × 512) and higher resolution (768 × 768, 1024 × 1024) matrix sizes. Five blinded readers reviewed representative transverse images in randomized order (150 total). Readers graded image quality (0 (worst)–100 (best)) for vascular wall definition, image noise, and confidence in stenosis grading. Ten patients' stenosis scores on CTA images were compared to invasive angiography. Scores were compared using mixed effects linear regression. Results: Reconstructions with 1024 × 1024 matrix were ranked significantly better for wall definition (mean score 72, 95% CI = 61–84), noise (74, CI = 59–88), and confidence (70, CI = 59–80) compared to 512 × 512 (wall = 65, CI = 53 × 77; noise = 67, CI = 52 × 81; confidence = 62, CI = 52 × 73; p = 0.003, p = 0.01, and p = 0.004, respectively). Compared to 512 × 512, the 768 × 768 and 1024 × 1024 matrix improved image quality in the tibial arteries (wall = 51 vs 57 and 59, p < 0.05; noise = 65 vs 69 and 68, p = 0.06; confidence = 48 vs 57 and 55, p < 0.05) to a greater degree than the femoral-popliteal arteries (wall = 78 vs 78 and 85; noise = 81 vs 81 and 84; confidence = 76 vs 77 and 81, all p > 0.05), though for the 10 patients with angiography accuracy of stenosis grading was not significantly different. Inter-reader agreement was moderate (rho = 0.5). Conclusion: Higher matrix reconstructions of 768 × 768 and 1024 × 1024 improved image quality and may enable more confident assessment of PAD. Clinical relevance statement: Higher matrix reconstructions of the vessels in the lower extremities can improve perceived image quality and reader confidence in making diagnostic decisions based on CTA imaging. Key Points: • Higher than standard matrix sizes improve perceived image quality of the arteries in the lower extremities. • Image noise is not perceived as increased even at a matrix size of 1024 × 1024 pixels. • Gains from higher matrix reconstructions are higher in smaller, more distal tibial and peroneal vessels than in femoropopliteal vessels. [ABSTRACT FROM AUTHOR] |