Abstrakt: |
Background and objective: Postpartum Depression (PPD) is a frequently ignored birth-related consequence. Social network analysis can be used to address this issue because social media network serves as a platform for their users to communicate with their friends and share their opinions, photos, and videos, which reflect their moods, feelings, and sentiments. In this work, the depression of delivered mothers is identified using the PPD score and segregated into control and depressed groups. Recently, to detect depression, deep learning methods have played a vital role. However, these methods still do not clarify why some people have been identified as depressed. Methods: We have developed Attribute Selection Hybrid Network (ASHN) to detect the postpartum depression diagnoses framework. Later analysis of the post of mothers who have been confirmed with the score calculated by the experts of the field using physiological questionnaire score. The model works on the analysis of the attributes of the negative Facebook posts for Depressed user Diagnosis, which is a large general forum. This framework explains the process of analyzing posts containing Sentiment, depressive symptoms, and reflective thinking and suggests psycho-linguistic and stylistic attributes of depression in posts. Results: The experimental results show that ASHN works well and is easy to understand. Here, four attribute networks based on psychological studies were used to analyze the different parts of posts by depressed users. The results of the experiments show the extraction of psycho-linguistic markers-based attributes, the recording of assessment metrics including Precision, Recall and F1 score and visualization of those attributes were used title-wise as well as words wise and compared with daily life, depression and postpartum depressed people using Word cloud. Furthermore, a comparison to a reference with Baseline and ASHN model was carried out. Conclusions: Attribute Selection Hybrid Network (ASHN) mimics the importance of attributes in social media posts to predict depressed mothers. Those mothers were anticipated to be depressed by answering a questionnaire designed by domain experts with prior knowledge of depression. This work will help researchers look at social media posts to find useful evidence for other depressive symptoms. Highlights: A novel hybrid attribute selection model has been proposed for the prediction of Post-Partum Depression. Attribute Hybrid Networks have been tested on a unique dataset that includes both the PDSS questionnaire and social media posts of the recruited individuals. The model applies a depression theory to select each attribute using interconnected neural networks and a post-level attention layer. The experimental results demonstrate that the Attribute Selection Hybrid Network outperforms other baseline models. The study employs title- and word-wise word clouds visualization to compare daily life, depression, and postpartum depression. The proposed Attribute Selection Hybrid Networks model is also capable of predicting various mood disorders. [ABSTRACT FROM AUTHOR] |