The Lichen Flavin-Dependent Halogenase, DnHal: Identification, Heterologous Expression and Functional Characterization.

Autor: Hasan, Nurain Shahera, Ling, Jonathan Guyang, Bakar, Mohd. Faizal Abu, Seman, Wan Mohd Khairulikhsan Wan, Murad, Abdul Munir Abdul, Bakar, Farah Diba Abu, Khalid, Rozida Mohd.
Zdroj: Applied Biochemistry & Biotechnology; Nov2023, Vol. 195 Issue 11, p6708-6736, 29p
Abstrakt: Enzymatic halogenation captures scientific interest considering its feasibility in modifying compounds for chemical diversity. Currently, majority of flavin-dependent halogenases (F-Hals) were reported from bacterial origin, and as far as we know, none from lichenized fungi. Fungi are well-known producers of halogenated compounds, so using available transcriptomic dataset of Dirinaria sp., we mined for putative gene encoding for F-Hal. Phylogenetic-based classification of the F-Hal family suggested a non-tryptophan F-Hals, similar to other fungal F-Hals, which mainly act on aromatic compounds. However, after the putative halogenase gene from Dirinaria sp., dnhal was codon-optimized, cloned, and expressed in Pichia pastoris, the ~63 kDa purified enzyme showed biocatalytic activity towards tryptophan and an aromatic compound methyl haematommate, which gave the tell-tale isotopic pattern of a chlorinated product at m/z 239.0565 and 241.0552; and m/z 243.0074 and 245.0025, respectively. This study is the start of understanding the complexities of lichenized fungal F-hals and its ability to halogenate tryptophan and other aromatic. compounds which can be used as green alternatives for biocatalysis of halogenated compounds. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index