Autor: |
Budău, Ruben, Bei, Mariana, Onet, Cristian, Agud, Eliza, Mintas, Olimpia Smaranda, Timofte, Adrian Ioan, Rosan, Cristina Adriana, Laslo, Vasile, Vicas, Simona Ioana |
Zdroj: |
Sustainability (2071-1050); Nov2023, Vol. 15 Issue 21, p15243, 15p |
Abstrakt: |
There is an increasing trend in forest production towards planting rapid-growing trees as attractive, environmentally friendly energy sources. This study aimed to establish an alternative to the traditional propagation of a number of selections of Robinia pseudoacacia L. by developing an in vitro culture protocol. This study's topic is of great importance, and it reflects an ongoing concern at the University of Oradea's Faculty of Environmental Protection's sustainable research program. The explants from four forms (called S1, S2, S3, and S4), selected for their phenotypic characteristics, were inoculated on four culture media (Murashige–Skoog (MS), Anderson, Chée–Pool, and Driver and Kuniyuki Woody (DKW)) with the same phytohormonal balance. DKW medium proved to be the better support of morphogenic activity, and it was further tested under different phytohormonal balances. Different results were observed depending on the hormone content in the DKW environment. In the presence of 0.5 mg/L benzylaminopurine (BAP) and 0.04 mg/L aminoisobutyric acid (AIB), 91.5% of the explants developed an average of 4.45 ± 0.18 shoots, whereas the average upper shoot height (3.82 cm) was recorded on DKW medium with 0.5 mg/L BAP and 0.04 mg/L α-naphthaleneacetic acid (NAA). Auxin, 0.05 mg/L AIB, promoted root production (5.27 ± 0.15 roots/explant), while 0.1 mg/L NAA promoted root length. In conclusion, the S4 selection produced the greatest outcomes of all environmental variables in terms of both the number of shoots and their heights. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|