Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry.

Autor: Bläsius, Thomas, Friedrich, Tobias, Katzmann, Maximilian
Předmět:
Zdroj: Algorithmica; Dec2023, Vol. 85 Issue 12, p3487-3520, 34p
Abstrakt: Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this trade-off. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of 2 . On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we narrow the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a (1 + o (1)) -approximation, asymptotically almost surely, and has a running time of O (m log (n)) . The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the trade-off between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index