Autor: |
D., Deepa, P. D., Rohini, Lakshmi M., Iswarya, Isvaran, Kavita, Ghosh, Susanta Kumar, Ishtiaq, Farah |
Předmět: |
|
Zdroj: |
PLoS Neglected Tropical Diseases; 11/8/2023, Vol. 17 Issue 11, p1-22, 22p |
Abstrakt: |
Background: Aedes-borne disease risk is associated with contemporary urbanization practices where city developing structures function as a catalyst for creating mosquito breeding habitats. We lack better understanding on how the links between landscape ecology and urban geography contribute to the prevalence and abundance of mosquito and pathogen spread. Methods: An outdoor longitudinal study in Bengaluru (Karnataka, India) was conducted between February 2021 and June 2022 to examine the effects of macrohabitat types on the diversity and distribution of larval habitats, mosquito species composition, and body size to quantify the risk of dengue outbreak in the landscape context. Findings: A total of 8,717 container breeding sites were inspected, of these 1,316 were wet breeding habitats. A total of 1,619 mosquito larvae representing 16 species from six macrohabitats and nine microhabitats were collected. Aedes aegypti and Aedes albopictus were the dominant species and significantly higher in artificial habitats than in natural habitats. Breeding preference ratio for Aedes species was high in grinding stones and storage containers. The Aedes infestation indices were higher than the WHO threshold and showed significant linear increase from Barren habitat to High density areas. We found Ae. albopictus breeding in sympatry with Ae. aegypti had shorter wing length. Conclusions: A large proportion of larval habitats were man-made artificial containers. Landscape ecology drives mosquito diversity and abundance even at a small spatial scale which could be affecting the localized outbreaks. Our findings showed that sampling strategies for mosquito surveillance must include urban environments with non-residential locations and dengue transmission reduction programmes should focus on 'neighbourhood surveillance' as well to prevent and control the rising threat of Aedes-borne diseases. Author summary: The quality of mosquito larval habitats (breeding sites) is one of the most important determinants of the distribution and abundance of mosquito species. Cities offer a heterogeneous landscape with a gradient of temperature, vegetation, built infrastructure (piped water access, water storage) which can vary in microclimate at fine spatial scales. Entomological surveys are often biased towards locations or houses with high mosquito densities. Sampling strategies for mosquito surveillance must include urban environments with non-residential locations. Understanding the linkages between environmental conditions (e.g., hydrology, microclimate), land use, climate change, increasing urbanization are some of the key factors modulating the mosquito life-history traits which influence epidemiologically relevant behaviors and their ability to transmit diseases. Our longitudinal study shows that a combination of manmade larval habitats and landscape ecology drives mosquito diversity and abundance even at a small spatial scale which could be affecting the incipient disease outbreaks. From science to policy perspective, this is the first comprehensive study from Bengaluru, India which shows that sampling strategies for mosquito surveillance must include urban environments with non-residential locations. We demonstrate that dengue transmission reduction programmes should focus on 'neighbourhood surveillance' as well to prevent and control the rising threat of Aedes-borne diseases. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|