Autor: |
Fabijanić, Matej, Kapetanović, Nadir, Mišković, Nikola |
Předmět: |
|
Zdroj: |
Journal of Marine Science & Engineering; Oct2023, Vol. 11 Issue 10, p1873, 24p |
Abstrakt: |
The process of fish cage inspections, which is a necessary maintenance task at any fish farm, be it small-scale or industrial, is a task that has the potential to be fully automated. Replacing trained divers who perform regular inspections with autonomous marine vehicles would lower the costs of manpower and remove the risks associated with humans performing underwater inspections. Achieving such a level of autonomy implies developing an image processing algorithm that is capable of estimating the state of biofouling buildup. The aim of this work is to propose a complete solution for automating the said inspection process; from developing an autonomous control algorithm for an ROV, to automatically segmenting images of fish cages, and accurately estimating the state of biofouling. The first part is achieved by modifying a commercially available ROV with an acoustic SBL positioning system and developing a closed-loop control system. The second part is realized by implementing a proposed biofouling estimation framework, which relies on AI to perform image segmentation, and by processing images using established computer vision methods to obtain a rough estimate of the distance of the ROV from the fish cage. This also involved developing a labeling tool in order to create a dataset of images for the neural network performing the semantic segmentation to be trained on. The experimental results show the viability of using an ROV fitted with an acoustic transponder for autonomous missions, and demonstrate the biofouling estimation framework's ability to provide accurate assessments, alongside satisfactory distance estimation capabilities. In conclusion, the achieved biofouling estimation accuracy showcases clear potential for use in the aquaculture industry. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|