Abstrakt: |
Warming and changing precipitation can alter the performance of native grasses that are essential to grassland ecosystems. Native grasses may respond to changing climate by phenotypic plasticity or lose their current ranges. Establishing plant species from southern, warmer provenances may reduce the likelihood of biodiversity loss and improve restoration success in cool, northern locations that are undergoing warming. We conducted competition trials for Pseudoroegneria spicata (bluebunch wheatgrass), a native grass commonly found in western North American grasslands, to understand the impact of temperature and moisture on plant–plant interactions. We obtained seeds from three locations along a latitudinal gradient in North America, two in British Columbia (BC), Canada, and one in California, USA. We compared the effects of warming, changing water inputs, and competitor provenance on pairwise competitive interactions among Pseudoroegneria spicata plants grown from seeds obtained from the three locations. We quantified interactions using the relative interaction intensity, which has values from −1 (complete competition) to +1 (complete facilitation). Target plants from northern British Columbia, the location with the coldest summer temperature, were generally more competitively suppressed when competing with plants from California, which had the warmest summer temperature and lowest summer precipitation. Competitive suppression of target plants from northern British Columbia and southern British Columbia was more intense when competitor provenance was more geographically distant from target plant provenance. Finally, plants from northern British Columbia and southern British Columbia were more suppressed at higher temperatures, indicating some local adaptation, while plants from California were not affected by competitors, temperature, or water input. Plants grown from seeds obtained from warm and dry locations appear to be more tolerant to competition at higher temperatures, compared to plants from cooler regions. Native plant diversity and restoration success in grasslands subjected to climate change may be preserved or improved by assisted migration of seeds from warm to cooler but warming locations. [ABSTRACT FROM AUTHOR] |