On the CO2 adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study.

Autor: Santos, Emanuel J. A., Giozza, William F., de Souza Júnior, Rafael T., Nepomuceno Cavalcante, Neymar J., Ribeiro Júnior, Luiz A., Lopes Lima, Kleuton A.
Předmět:
Zdroj: Journal of Molecular Modeling; Oct2023, Vol. 29 Issue 10, p1-9, 9p
Abstrakt: Context: Recent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO 2 adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO 2 molecules, approximately - 0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO 2 adsorption, leading to adsorption energies ranging from - 0.13 to - 0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO 2 sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO 2 molecules suggests that the interaction between BN-BPN and CO 2 cannot modify the electronic properties of BN-BPN before the CO 2 molecules escape. Methods: We performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index