Compressed sensing for ECG signal compression using DWT based sensing matrices.

Autor: Parkale, Yuvraj V., Nalbalwar, Sanjay L.
Předmět:
Zdroj: Smart Science; Dec2023, Vol. 11 Issue 4, p759-773, 15p
Abstrakt: In this article, we have investigated the 1-D discrete wavelet transform (DWT)-based measurement matrices for electrocardiogram (ECG) compression. Moreover, the current work examines the suitability of the diverse DWT matrices, namely Symlets, Battle, Coiflets, Vaidyanathan, and Beylkin wavelet families, for ECG compression. Furthermore, this article shows the comparative performance study of the proposed DWT matrices with conventional deterministic and random measurement matrices. Overall, the Battle1 wavelet-based measurement matrices demonstrate the enhanced performance against the db3, coif5, and sym6 based measurement matrices in terms of Percentage Root-Mean Squared Difference (PRD), Root Mean Square Error (RMSE), and Signal-to-Noise Ratio (SNR). Finally, it was seen that the proposed Battle1 matrix demonstrates the improved performance against the conventional measurement matrices such as the Karhunen–Loeve transform (KLT), Discrete Cosine Transform (DCT) matrix, and random Hadamard measurement matrix. Thus, the result shows the adequacy of DWT measurement matrices for the compression of ECG. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index