Effects of CYP2D6 and CYP2C19 genetic polymorphisms and cigarette smoking on the pharmacokinetics of tolperisone.

Autor: Byeon, Ji-Young, Cho, Chang‑Keun, Kang, Pureum, Kim, Se-Hyung, Jang, Choon-Gon, Lee, Seok-Yong, Lee, Yun Jeong
Zdroj: Archives of Pharmacal Research; Aug2023, Vol. 46 Issue 8, p713-721, 9p
Abstrakt: Tolperisone, a muscle relaxant used for post-stroke spasticity, is metabolized to its main metabolite by CYP2D6 and to a lesser extent by CYP2C19 and CYP1A2. We investigated the effects of CYP2D6 and CYP2C19 genetic polymorphisms and cigarette smoking on tolperisone pharmacokinetics. A 150 mg oral dose of tolperisone was given to 184 healthy Korean subjects and plasma concentrations of tolperisone were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A 3.14-fold significant increase in AUC0–∞ was observed in the CYP2D6*10/*10 group compared with the CYP2D6*wt/*wt group, whereas a 3.59-fold increase in AUC0–∞ was observed in CYP2C19PMs compared to CYP2C19EMs. Smokers had a 38.5% decrease in AUC0–∞ when compared to non-smokers. When these effects were combined, CYP2D6*10/*10-CYP2C19PM-Non-smokers had a 25.9-fold increase in AUC0–∞ compared to CYP2D6*wt/*wt-CYP2C19EM-Smokers. Genetic polymorphisms of CYP2D6 and CYP2C19 and cigarette smoking independently and significantly affected tolperisone pharmacokinetics and these effects combined resulted in a much greater impact on tolperisone pharmacokinetics. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index