Abstrakt: |
Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques. [ABSTRACT FROM AUTHOR] |