Autor: |
Stober, Gunter, Vadas, Sharon L., Becker, Erich, Liu, Alan, Kozlovsky, Alexander, Janches, Diego, Qiao, Zishun, Krochin, Witali, Shi, Guochun, Yi, Wen, Zeng, Jie, Brown, Peter, Vida, Denis, Hindley, Neil, Jacobi, Christoph, Murphy, Damian, Buriti, Ricardo, Andrioli, Vania, Batista, Paulo, Marino, John |
Předmět: |
|
Zdroj: |
EGUsphere; 9/27/2023, p1-21, 21p |
Abstrakt: |
The Hunga Tonga-Hunga Ha'apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic-caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240 ± 5 5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m/s. We identified these waves in the HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 m/s and 162.2 ± 6.1 m/s for the eastward and the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 minutes of the nominal value of 15th January 2022 04:15 UTC and localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano confirming our estimates to be realistic. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|