Autor: |
Choe-Yung Teoh, Joon Kit Wong, Ying Hao Ko, Hamid, Muhammad Najib Abdul, Lu Ean Ooi, Wei Hong Tan |
Zdroj: |
Journal of Mechanical Engineering (1823-5514); 9/15/2023, Vol. 20 Issue 3, p49-62, 14p |
Abstrakt: |
This paper describes the design of a two-stage force amplification frame for the piezoelectric energy harvester to capture mechanical energy from walking human footsteps. The frame design optimises the stress distribution to improve the force amplification ratio on the existing footstep energy harvesters. The magnification of the input force exerted on a piezoelectric stack increases the system's power output. A combination of single and compound two-stage frame design with additional linkage support was proposed, which maximise the conversion of tension to compression forces. The proposed frame also significantly reduces the maximum displacement of the frame to ensure walking comfort. The frame is tested with the input force of 85 N to 120 N based on the adult footstep during walking and running. The simulated results show that the proposed frame has a force amplification ratio of 25.3, an 11.85% improvement from the existing frames. The frame also limits the maximum displacement to 1.02 mm, 22.14% compared to the existing frames. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|