Autor: |
Patil, Mamta, Patil, Javesh, Patil, Devyani, Patel, Kiran, Tatiya, Aayushi |
Předmět: |
|
Zdroj: |
Materials Proceedings; 2023, Vol. 14, p62, 8p |
Abstrakt: |
Nanotechnology is used today in a wide range of industries. Weakly water-soluble medications have better solubility and bioavailability when delivered by nano-specific drug delivery methods, such as nanocrystals. Another name for ziprasidone is 5-[2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one, and it is a brand-new "atypical" or "second-generation" antipsychotic drug. Its multipotent G-protein-coupled (GPCR) receptor binding profile is distinctive. It is used to treat bipolar-disorder-related acute manic or mixed episodes as well as schizophrenia. Schizophrenia is a serious mental condition in which a person can experience reality in a strange or different way. Ziprasidone is a highly lipophilic and unstable drug. Ziprasidone nanoparticles, another incarnation of this drug, are used to treat diseases. When ziprasidone is present in the form of particles with an effective average crystal size of less than or equal to 100 nm, the term "nanoparticle" is frequently used to characterize them. A colloidal submicron dispersion of ziprasidone particles is what ziprasidone nanosuspensions and nanoemulsions are made of. One formulation that makes use of solubilization technology is a nanosuspension of a crystalline ziprasidone free base. In order to get around the drug's solubility issue and investigate its potential for nose-to-brain delivery, a buffered nanoemulsion of ziprasidone HCl has been created. We discuss numerous ziprasidone nanoformulations used to treat psychotic illnesses in this review. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|