Abstrakt: |
Hsp70 proteins function as molecular chaperones, regulating various cellular processes in plants. In this study, a genome-wide analysis led to the identification of 22 Hsp70 (MeHsp70) genes in cassava. Phylogenetic relationship studies with other Malpighiales genomes (Populus trichocarpa, Ricinus communis and Salix purpurea) classified MeHsp70 proteins into eight groups (Ia, Ib, Ic, Id, Ie, If, IIa and IIb). Promoter analysis of MeHsp70 genes revealed the presence of tissue-specific, light, biotic and abiotic stress-responsive cis-regulatory elements showing their functional importance in cassava. Meta-analysis of publically available RNA-seq transcriptome datasets showed constitutive, tissue-specific, biotic and abiotic stress-specific expression patterns among MeHsp70s in cassava. Among 22 Hsp70, six MeHsp70s viz., MecHsp70-3, MecHsp70-6, MeBiP-1, MeBiP-2, MeBiP-3 and MecpHsp70-2 displayed constitutive expression, while three MecHsp70s were induced under both drought and cold stress conditions. Five MeHsp70s, MecHsp70-7, MecHsp70-11, MecHsp70-12, MecHsp70-13, and MecHsp70-14 were induced under drought stress conditions. We predicted that 19 MeHsp70 genes are under the regulation of 24 miRNAs. This comprehensive genome-wide analysis of the Hsp70 gene family in cassava provided valuable insights into their functional roles and identified various potential Hsp70 genes associated with stress tolerance and adaptation to environmental stimuli. [ABSTRACT FROM AUTHOR] |