Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination.

Autor: Giulimondi, Vera, Ruiz-Ferrando, Andrea, Giannakakis, Georgios, Surin, Ivan, Agrachev, Mikhail, Jeschke, Gunnar, Krumeich, Frank, López, Núria, Clark, Adam H., Pérez-Ramírez, Javier
Předmět:
Zdroj: Nature Communications; 9/9/2023, Vol. 14 Issue 1, p1-12, 12p
Abstrakt: Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design. Carbon is a key support for metal-catalyzed acetylene hydrochlorination to vinyl chloride but its role remains elusive. Here, the authors, by means of operando spectroscopy, demonstrate the co-catalytic function of neighboring carbon and isolated metal atoms, constituting the active ensemble. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index