Tailoring polyamide 6 to exhibit super‐tough behavior and high thermomechanical stability: The role of AES and EPDM‐MA hybridization.

Autor: da Silva, Pamela Thainara Vieira, Barreto Luna, Carlos Bruno, dos Santos Filho, Edson Antonio, do Nascimento, Emanuel Pereira, Araújo, Edcleide Maria
Předmět:
Zdroj: Journal of Applied Polymer Science; Oct2023, Vol. 140 Issue 39, p1-19, 19p
Abstrakt: High‐performance blends based on polyamide 6 (PA6) were prepared using a hybrid mixture of acrylonitrile/EPDM/styrene (AES) and maleic anhydride grafted ethylene–propylene–diene (EPDM‐MA). Samples were processed in a twin‐screw extruder and injection molded. The torque curves of the PA6/AES/EPDM‐MA blends shifted to higher torque values with added EPDM‐MA, suggesting a chemical interaction between the components. The melt flow index (MFI) results for the PA6/AES/EPDM‐MA blends confirmed the intensification of the flow resistance. Intense infrared absorption peaks for NH and CO indicated that the amine groups of PA6 reacted with the maleic anhydride in EPDM‐MA. The 60/25/15 wt% PA6/AES/EPDM‐MA blend showed an impact strength over 800 J/m, heat deflection temperature (HDT) of 62.3°C, elongation at break of 115%, and contact angle of 59.1°, corresponding to increases of 1718%, 10.5%, 297%, and 10%, respectively, compared to neat PA6. When examined by scanning electron microscopy, the morphology showed a fracture surface with a high degree of plastic deformation and the formation of elastic microfibrils, contributing to the super toughening of the PA6/AES/EPDM‐MA (15%) system. These results indicate the technological potential of the PA6/AES/EPDM‐MA (15 wt%) blends for application in industrial sectors that require super‐tough plastics. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index