Autor: |
Kou Yang, Zhitao Hu, Xiaolai Li, Nikolaev, Konstantin, Gan Kai Hong, Mamchik, Natalia, Erofeev, Ivan, Mirsaidov, Utkur M., Castro Neto, Antonio H., Blackwood, Daniel J., Shchukin, Dmitry G., Trushin, Maxim, Novoselov, Kostya S., Andreeva, Daria V. |
Předmět: |
|
Zdroj: |
Proceedings of the National Academy of Sciences of the United States of America; 8/29/2023, Vol. 120 Issue 35, p1-8, 23p |
Abstrakt: |
Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nanocompartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass-line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|