The Anterior Fibers of the Superficial MCL and the ACL Restrain Anteromedial Rotatory Instability.

Autor: Herbst, Elmar, Muhmann, Raphael J., Raschke, Michael J., Katthagen, J. Christoph, Oeckenpöhler, Simon, Wermers, Jens, Glasbrenner, Johannes, Robinson, James R., Kittl, Christoph
Předmět:
Zdroj: American Journal of Sports Medicine; Sep2023, Vol. 51 Issue 11, p2928-2935, 8p
Abstrakt: Background: There is limited knowledge about how the anterior cruciate ligament (ACL) and capsuloligamentous structures on the medial side of the knee act to control anteromedial rotatory knee instability. Purpose: To investigate the contribution of the medial retinaculum, capsular structures (anteromedial capsule, deep medial collateral ligament [MCL], and posterior oblique ligament), and different fiber regions of the superficial MCL to restraining knee laxity, including anteromedial rotatory instability. Study Design: Controlled laboratory study. Methods: Eight fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic testing system in a position-controlled mode. Loads of 10 N·m valgus rotation, 5 N·m tibial external rotation, 5 N·m tibial internal rotation, and 134 N anterior tibial translation in 5 N·m external rotation were applied at different flexion angles. The motion of the intact knee at 0° to 120° of flexion was replicated after sequential excision of the sartorial fascia; anteromedial retinaculum; anteromedial capsule; anterior, middle, and posterior fibers of the superficial MCL; the deep MCL; the posterior oblique ligament; and the ACL. The reduction in force/torque indicated the contribution of each resected structure to resisting laxity. A repeated-measures analysis of variance with a post hoc Bonferroni test was used to analyze the relative force and torque changes from the intact state. Results: The superficial MCL was the most important restraint to valgus rotation from 0° to 120° and provided the largest contribution to resisting external rotation between 30° and 120° of knee flexion, gradually increasing from 25.2% ± 7.4% at 30° to 36.9% ± 15.4% at 90°. The posterior oblique ligament contributed significantly to resisting valgus rotation only in extension (17.2% ± 12.1%) but was the major restraint to internal rotation at 0° (46.7% ± 13.1%) and 30° (30.4% ± 17.7%) of flexion. The sartorial fascia and anteromedial retinaculum resisted ER at all knee flexion angles (P <.05) and was the single most important restraint in the extended knee (19.5% ± 11%). The capsular structures (anteromedial capsule and deep MCL) had a combined contribution of 20% ± 11.5% at 0° and 23.4% ± 10.5% at 120° of knee flexion but were less important from 30° to 90°. The ACL was the primary restraint to anterior tibial translation in external rotation between 0° and 60° of flexion (50.2% ± 16.9% at 30°), but the superficial MCL was more important at 90° to 120° of knee flexion (36.8% ± 16.4% at 90°). The anterior, middle, and posterior regions of the superficial MCL contributed differently to the simulated laxity tests. The anterior fibers were the most important part of the superficial MCL in resisting external rotation and combined anterior tibial translation in external rotation. Conclusion: The superficial MCL not only was the primary restraint to valgus rotation throughout the range of knee flexion but also importantly contributed to resisting anterior tibial translation in external rotation, particularly in deeper flexion in the cadaveric model. The anterior fibers of the superficial MCL are the most important superficial MCL fibers in resisting anterior tibial translation in external rotation. This study suggests that a medial reconstruction that reproduces the function of the posterior MCL fibers and posterior oblique ligament may not best control anteromedial rotatory instability. Clinical Relevance: Based on these data, there is a need for an individualized medial reconstruction to address different types of medial injury patterns and instabilities. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index