Constructing a composite microfiltration carbon membrane by TiO2 and Fe2O3 for efficient separation of oil–water emulsions.

Autor: Zhang, Bing, Peng, Yao, Yao, Yanhu, Hong, Xueqian, Wu, Yonghong
Předmět:
Zdroj: Environmental Science & Pollution Research; Aug2023, Vol. 30 Issue 40, p92027-92041, 15p
Abstrakt: Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index